If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6x^2=1200
We move all terms to the left:
6x^2-(1200)=0
a = 6; b = 0; c = -1200;
Δ = b2-4ac
Δ = 02-4·6·(-1200)
Δ = 28800
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{28800}=\sqrt{14400*2}=\sqrt{14400}*\sqrt{2}=120\sqrt{2}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-120\sqrt{2}}{2*6}=\frac{0-120\sqrt{2}}{12} =-\frac{120\sqrt{2}}{12} =-10\sqrt{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+120\sqrt{2}}{2*6}=\frac{0+120\sqrt{2}}{12} =\frac{120\sqrt{2}}{12} =10\sqrt{2} $
| 2(4+2x)=16 | | 5(-v–5)3(v-8)=0 | | 2(x-1)=-(4x+2) | | 2y-2=5y+4 | | (25b-5)-8(3b+2=-4 | | Z=8+i | | x-(8x3.14)=3.1; | | 4x-13=3x-19 | | -10x+8=-2 | | 24=-11u+3u | | -6x+(-3x+10)=2(-9x+8)-10 | | 2/3(x+2)=14 | | 3(2x+1)+12+6=2(3x+1) | | 2=4(v-7)-7v | | 19=3-(a+9) | | 3=-13-r | | (n-1)+4n=2(3n-1)= | | 4x+1(x+4)+10(x-1)=24 | | 4x+10=x+12 | | 2x+95=205 | | -6-2x=5x-9x+20 | | 8x+46=5(x+8) | | 2x-(-5x-5)=-(-7x-10)-4 | | -7y28=14 | | 0.6y+5=3 | | |y|+13=13 | | 1/4(12x+16)=5x+4 | | |3x+3|=27 | | 180/8w=28 | | 15n-5=80 | | |v|+13=13 | | .5(2x-4)+2x=13 |